Scalable Distributed Consensus
to Support MPI Fault Tolerance

Darius Buntinas
Argonne National Laboratory
buntinas @mcs.anl.gov

Abstract—As system sizes increase, the amount of time in
which an application can run without experiencing a failure
decreases. Exascale applications will need to address fault toler-
ance. In order to support algorithm-based fault tolerance, com-
munication libraries will need to provide fault-tolerance features
to the application. One important fault-tolerance operation is
distributed consensus. This is used, for example, to collectively
decide on a set of failed processes. This paper describes a scalable,
distributed consensus algorithm that is used to support new MPI
fault-tolerance features proposed by the MPI 3 Forum’s fault-
tolerance working group. The algorithm was implemented and
evaluated on a 4,096-core Blue Gene/P. The implementation was
able to perform a full-scale distributed consensus in 222 us and
scaled logarithmically.

I. INTRODUCTION

As process counts in applications grow toward exascale, the
length of time an application can run without experiencing a
failure, known as the mean time between failures (MTBF),
decreases. Applications will need to address fault tolerance in
order to be useful on future exascale machines. Checkpointing
can provide fault tolerance to an application without the need
to modify it. However, as the MTBF decreases, checkpoints
will need to be taken more often, thus decreasing the amount
of useful work the application can perform between failures.

Whereas checkpointing provides fault tolerance to an appli-
cation in a transparent manner, when using algorithm-based
fault tolerance (ABFT) [1][2][3], the application is aware of
faults and handles them explicitly. The fault-tolerance working
group of the MPI 3 Forum has been working on a proposal
[4], that adds fault-tolerance features to MPI in order to
support ABFT applications. The proposal defines the behavior
of an MPI library if processes fail. For example, existing
operations such as MPI_Comm_split are required by the
proposal to either succeed at every process or return an error
at every process, even if processes fail before or during the
operation. The proposal also introduces new functions, such
as MP1_Comm_validate, that require all processes to return
the same list of failed processes. A distributed consensus
algorithm is needed to implement these operations.

This paper presents a scalable, fault tolerant, distributed
consensus algorithm used to implement the MPI_Comm_
validate function. The MPI_Comm_validate implementation

This work was supported in part by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357.

is evaluated on a 4,096-core IBM Blue Gene/P machine and
exhibits O(logn) scaling.

The rest of the paper proceeds as follows. In Section II
we describe the problem. In Section III the algorithm is
presented along with proofs. In Section IV we describe the
implementation of MPI_Comm_validate using the distributed
consensus algorithm. In Section V we evaluate the perfor-
mance. In Section VI we review related work. In Section VII
we conclude the paper and briefly discuss future work.

II. PROBLEM DESCRIPTION

We present the distributed consensus algorithm as it would
be used in the MPI_Comm_validate operation, although the
algorithm could also be used in other operations requiring
distributed consensus, such as MPI_Comm_split. We first
list the assumptions we make on the environment and then
describe the MP1_Comm_validate function.

Assumptions on the environment:

1) The only failures will be process failures. Communica-
tion errors are masked by the MPI implementation. We
do not consider network partitioning in this paper.

2) Process failures will be fail-stop failures. Once a process
fails, it will stop sending messages.

3) Failure detectors are eventually perfect [5] with the addi-
tional requirement that if any process suspects a process
to have failed, then it will be suspected permanently and
will eventually be suspected by all processes.

4) Processes do not spontaneously recover after failure.
Once a process has failed, it will remain failed.

5) There will always be a point in time in the future when
no processes fail long enough to allow the algorithm
described to complete.

The MPI_Comm_validate function uses distributed con-
sensus to decide on a set of failed processes, which must con-
tain every failed process known by any participating process at
the time the function is called. The same set of failed processes
must be returned by the function at every process. If a process
fails during the MPl_Comm_validate operation (i.e., after the
first process calls the function and before any process returns),
the set of failed processes returned may or may not contain
that failed process.

A. Failure Detector

The MPI 3 fault-tolerance proposal requires an eventually
perfect failure detector [5]. An eventually perfect failure detec-



tor guarantees that if a process fails, every other process will
eventually suspect that process of having failed, and that if a
process is alive, then eventually no process will suspect it. This
means that it is possible for a live process to be mistakenly
suspected of having failed, but that eventually every process
will realize that it is still alive. Since the failure detector may
mistakenly report a process as failed, a process can never be
sure that the process has in fact failed, so in this paper we
say that the process is suspected of having failed, or that the
process is suspect.

The proposal adds an additional requirement to handle
the case of processes that are mistakenly believed to have
failed. The requirement says that if a process is incorrectly
suspected as having failed, then every process will eventually
suspect that process. In addition, the MPI implementation is
allowed to kill any processes that are mistakenly identified as
failed. This requirement means that algorithms do not have to
handle the case where a process that was once suspected is
no longer suspected. Although this requirement seems like a
heavy handed way of dealing with false positives, we expect
such cases will not be very common. Exascale systems will
have RAS systems in place to monitor various components,
and can more reliably detect hardware failures than by relying
on timeouts. The proposal also requires that when a process
suspects that another process has failed, it will no longer
receive messages from the suspected process, even if the
process is still alive.

This paper does not consider transient failures or network
failures, including network partitioning. Such failures are not
considered by the current MPI 3 fault-tolerance proposal, but
the fault-tolerance working group is planning on addressing
them in future proposals. This paper does not address the
implementation of a failure detector, but does assume the
presence of a failure detector as described above.

B. Loose Semantics

The MPI 3 fault-tolerance proposal discusses allowing loose
semantics for the MPl_Comm_validate operation. Consider
the case where a process returns a set of failed processes,
and then immediately fails before the consensus protocol
completes. Loose semantics allow the remaining live processes
to agree on a set of failed processes which is different from
that returned by the failed process. We expect that many
applications will not require the strict semantics, since the
remaining live processes all returned the same set, and by
using loose semantics the latency of the algorithm is improved
by eliminating a phase.

III. ALGORITHM

In this section, we give a brief overview of the algorithm
at a high level and then describe the broadcast and distributed
consensus algorithms in detail.

The algorithm proceeds in three phases. In Phase 1, the root
generates a ballot and broadcasts it to the other processes.
Each process then responds with an ACCEPT or REJECT
depending on whether it finds the proposed ballot acceptable.

The response is collected up to the root. If the ballot is rejected,
the root generates a new ballot and tries again. Once all
processes accept a ballot, the root proceeds to Phase 2 where it
broadcasts an AGREE message to all processes. Once a process
receives an AGREE message, it knows that the ballot has been
agreed upon by all processes. In Phase 3, the root broadcasts
a COMMIT message. Upon receiving the COMMIT message,
the processes commit to the ballot, and can return from the
MPI_Comm_validate.

A. Basic Fault Tolerant Tree Broadcast Algorithm

The fault tolerant tree broadcast algorithm is used to ensure
messages are received by all processes in the presence of
process failure. The algorithm returns either an ACK or a
NAK to the root process indicating whether the algorithm
succeeded. If the algorithm returns an ACK, then all processes
have received the message. Listing 1 shows the algorithm.

The algorithm is initiated by the root, which is the lowest
ranked unsuspected process. The root chooses a value for
bcast_num that is larger than any bcast_num value that
it has used or seen previously. The bcast_num value is
included in all messages to ensure that messages from a
previously aborted instance of the broadcast algorithm do
not interfere with the current instance. The root then com-
putes its set of descendant processes (line 4) and calls the
compute_children function in line 16 to compute the set of
children as well as assigning descendant processes to each
child. The compute_children function is described below.
The root then sends a BCAST message to each child that
contains the bcast_num along with the set of descendants
for that child (line 18).

Non-root processes wait for a BCAST message (line 7). If an
old BCAST message is received, the process replies with a NAK
message to the sender. A NAK is sent, rather than just ignoring
the message so that if the root process did not choose a
bcast_num that was large enough and it was used previously,
then the root will not hang but will receive a NAK and can
try again. Once the child receives a BCAST message with an
acceptable bcast_num it sets its own bcast_num to that
value, and sets its parent set of descendants. The process, then
computes its set of children and sends BCAST messages to its
children (line 16).

The root and non-root processes then wait for acknowledg-
ments from each child (line 22). If a child should fail while
the process is waiting for an acknowledgment, a NAK is sent
to the parent (lines 24).

If for some reason, a new instance of the broadcast algo-
rithm is initiated, it is possible that a process may receive a
BCAST message while waiting for an acknowledgment from
its children (line 26). Non-root processes respond by sending
a NAK if the bcast_num of the message is not larger than
the process’s bcast_num, but it the messages bcast_num
is larger, then the process abandons the current instance and
starts the algorithm over (line 31).

If a process receives a NAK from a child, a NAK is sent to
the parent (lines 35). If all children return an ACK, then the



01NN kAW~

AW LW W W W W LW LW WWINNNIENDNNDNDDNNDDNDRE = /=== = = = =
SOV NPHE LV, OV IANNDE VDR OOV INWUN A WD = OO

O 01NN AW =

Listing 1. Fault tolerant broadcast algorithm
if (rank = root)
parent < NULL
bcast_num ¢~ larger than any bcast_num seen
my_descendants < {p € processes : rank(root) < rank(p) < num_procs}
else
do
wait for BCAST message
if (msg.bcast_num < bcast_num)
send NAK to msg.sender
while (msg.bcast_num < bcast_num)
Ll:
bcast_num < msg.bcast_num
my_descendants < msg.descendants
parent < msg.sender

compute_children (my_descendants)
for each child € children
send BCAST with bcast_num and descendants[child] to child

num_ACKs < 0
while (num_ACKs < |children|)
wait for ACK/NAK message or child failure
if (child fails)
send NAK with bcast_num to parent
return NAK
if (BCAST received)
if (msg.bcast_num < bcast_num) /* NAK old bcasts */
send NAK with msg.bcast_num to sender

continue
else /+ new bcast has been initiated #*/
goto L1
if (msg.bcast_num # bcast_num)
continue

if (NAK received)
send NAK to parent
return NAK

++num_ACKs

send ACK with bcast_num to parent
return ACK

Listing 2.  Algorithm for computing children
compute_children (my_descendants)
while (my_descendants # 0)
do
choose child € my_descendants
my_descendants < my_descendants — {child}
while (child is suspect)
descendants|[child] < {p € my_descendants : rank(p) > rank(child)}
my_descendants < my_descendants — descendants[child]
children < children U {child}



process sends an ACK to its parent (line 39) and the algorithm
returns with an ACK.

Because of the way descendant sets are computed, a parent’s
rank will always be lower than any of its children’s ranks. This
means that if a process suspects all processes with lower ranks
and appoints itself root, it cannot receive a BCAST message,
even if it incorrectly suspected a process with a lower rank,
so root processes will never need to handle received BCAST
messages.

The set of children is computed by using the compute_
children function shown in Listing 2. Given a set of descen-
dants, the process chooses a child from that set and assigns
all processes from the descendant set with ranks higher than
the child’s to the child’s descendant set. The child and its
descendants are removed from the process’s descendant set.
The process repeats until the process’s descendant set is empty.
Any suspected children are discarded.

Note that when choosing a child from its descendant set,
if a process always chooses a descendant with a rank closest
to the median rank, this broadcast algorithm will generate a
binomial tree.

The broadcast algorithm satisfies three properties:

1) (Correctness) If the algorithm returns an ACK at the
root process, then all non-suspect processes received the
BCAST message.

2) (Termination) The root process of the instance of the al-
gorithm with the largest bcast_num will return either
an ACK or a NAK.

3) (Non-triviality) If no processes become suspect during
the execution of the algorithm, then the instance of the
algorithm with the largest bcast_num will return an
ACK at the root.

We first prove several lemmas then prove that the broadcast
algorithm satisfies these properties.

Lemma 1: If no processes become suspect while the broad-
cast algorithm is running, the instance of the algorithm with
the highest bcast_num constructs a spanning tree reaching
every live process.

Proof: By induction.

Base case (no descendants). A process with an empty
descendant set (i.e., a process with no children) is a spanning
tree.

Inductive step (n + 1 descendants): In compute_children,
process’s descendant set is divided into sets containing a
child and its descendants. The process will send a BCAST
message to each child, and upon receiving the message, each
child will set its parent to that process. Since each child
forms a spanning tree with its descendants, the process and its
descendants also forms a spanning tree. Because this instance
of the broadcast algorithm has the highest bcast_num, no
other message can change the parent of any child, and the
tree will remain a spanning tree until another broadcast with
a higher bcast_num is performed.

Therefore the algorithm constructs a spanning tree of a
process and its descendants. ]

Lemma 2: Consider the instance of the broadcast algorithm
with the largest bcast_num. If while the algorithm is run-
ning, a process that has not yet been added to the spanning
tree becomes suspected, then the algorithm will still create a
spanning tree of the remaining non-suspect processes.

Proof: The algorithm is unaffected by a process becom-
ing suspect before it is added to the spanning tree because
the algorithm always chooses children from the non-suspect
processes in the descendant set. [ ]

Lemma 3: If a process that has already been added to the
spanning tree is suspected by its parent before sending an
ACK, the root will not receive an ACK from every child, but
will receive a NAK from some child or suspect a child.

Proof: If process A is suspected by its parent, the parent
of process A will send a NAK rather than an ACK to its parent.
The NAK will be forwarded up the tree to the root. If the NAK
cannot be forwarded to the root because some process, B,
between process A and the root fails, then the parent of process
B will suspect its child and send a NAK to its parent which
will be forwarded up the tree. Since process B will always be
closer to the root than process A, even if there are multiple
failures along the route, a NAK will either eventually reach the
root or the root will suspect one of its own children. In either
case, since a process will not send an ACK after sending a
NAK, the root will not receive an ACK from every child. ®

Lemma 4: In a spanning tree, if a process sends an ACK,
then it and all of its descendants have received the message.

Proof: By induction.

Base case (leaf process): A leaf process will only send
an ACK when it has received the BCAST message. It has no
descendants, so it and all of its descendants have received the
message.

Inductive step: A non-root process of the spanning tree will
send an ACK only when it has received an ACK from each
child. By the induction hypothesis, if the process received
an ACK from every child, then every descendant of the
process has received the message. The process itself must have
received the BCAST message because it had forwarded the
message to its children. [ ]

We now prove the correctness, termination and non-triviality
properties of the broadcast algorithm.

Theorem 1: (Correctness) If the root returns with an ACK,
then all non-suspect processes have received the BCAST
message.

Proof: From Lemma 4, if the root receives an ACK from
every child, then every child and every child’s descendants
have received the BCAST message. The compute_children
function assigns every process in the root’s descendant set to
the set of children or to the descendants of a child, so every
descendant of the root has received the BCAST message. The
root’s descendant set consists of all processes with rank lower
than the root (line 4), and the root would not have appointed
itself root unless it suspected every process with a lower rank.
The only way a process returns from the algorithm with an
ACK is if it has received an ACK from every child (line 40).
Therefore, if the root receives an ACK from every child, then



all non-suspect processes have received the BCAST message,
and the root returns with an ACK. ]

Theorem 2: (Termination) The non-suspected root will re-
turn either an ACK or a NAK.

Proof: 1If no process fails after being added to the tree,
then by Lemmas 2 and 4, a spanning tree will be created
and the root will receive an ACK from every child and will
return an ACK. If a process fails after being added to the tree
but before sending an ACK, then by Lemma 3, the root will
receive a NAK from a child or, if a child fails, the root will
suspect the child. In either case the root will return a NAK
(lines 25 and 36).

The termination of the algorithm will not be affected in the
case where a process becomes suspect after sending an ACK,
because the process has already sent an ACK and it’s parent
process will not be waiting for its acknowledgment.

In the case where the root receives an ACK from every child,
it will return an ACK. In the case where the root receives a
NAK from some child, or if it suspects a child, then it will
return a NAK. n

Theorem 3: (Non-triviality) If no processes are suspected
during execution, then all processes will receive the BCAST
message from the instance of the algorithm with the largest
bcast_num.

Proof: By Lemma 1 if no process is suspected, during
the execution of the instance of the algorithm with the largest
bcast_num, then a spanning tree will be created.

Every process in the tree will receive the message:

Base case (root node, depth 0): The root process will send
the message to every child.

Inductive step (depth n + 1): When a process receives the
message, it will forward it to each child.

Since the tree is a spanning tree, every process will receive
the message.

|

B. Distributed Consensus Algorithm

The distributed consensus algorithm is shown in Listing 3.
The listing is split into three parts: introductory steps per-
formed by all processes, the steps performed by the root
process and the actions performed by non-root processes. The
steps performed by the root are executed serially starting at
Phase 1. The non-root part of the listing shows four actions;
each action consists of an event followed by statements. The
statements of an action are executed by a process when the
associated event occurs, e.g., when a message is received.

The distributed consensus algorithm uses a modified version
of the broadcast algorithm to distribute ballots and collect
responses. The algorithm used for broadcasting ballots is
similar to the regular broadcast algorithm except that (1) a
ballot is piggybacked on the BCAST messages, (2) a response
is piggybacked on the ACK messages (3) when a process
receives an ACK from every child, if every ACK message had
an ACCEPT response piggybacked on it and the process itself
found the ballot acceptable, then the process piggybacks an
ACCEPT on the ACK message that it sends to its parent;

O 001N B W=

50
52
53
54

56

Listing 3. Distributed consensus algorithm

Initialization:

state <~ BALLOTING

root is lowest ranked non—suspect proc
Root Process (start in Phase 1)

Phase 1:
generate ballot

r < broadcast BCAST (BALLOT) with ballot
if (r = NAK (AGREE_FORCED))
ballot < msg.ballot

goto Phase 2
if (r = NAK)

restart Phase 1

if (r = ACK(REJECT))

restart Phase 1

goto Phase 2

Phase 2:
state < AGREED

r < broadcast BCAST (AGREE) with ballot

if (r = NAK)

restart Phase 2

goto Phase 3

Phase 3:

state <~ COMMITTED

r < broadcast BCAST (COMMIT)

if (r = NAK)

restart Phase 3

Non-Root Processes (select any enabled action)

Recv BCAST (BALLOT) :

if (state = BALLOTING)
broadcast algorithm

else

send NAK (AGREE_FORCED)

Recv BCAST (AGREE) :

with ballot

if (state # BALLOTING and
ballot # msg.ballot)
send NAK to sender
broadcast algorithm
ballot < msg.ballot

state < AGREED

Recv BCAST (COMMIT) :

broadcast algorithm

state <~ COMMITTED

Suspect all processes with rank less than

self:

appoint self as root process
if (state = COMMITTED)

goto Phase 3
else if (state

goto Phase 2
else

goto Phase 1

AGREED)



otherwise the process piggybacks a REJECT on the ACK,
and (4) if a process receives an AGREE_FORCED message
piggybacked on a NAK message, it will also piggyback the
AGREE_FORCED message on the NAK message it sends to its
parent. In Listing 3, when a message has a piggybacked mes-
sage, the piggybacked message will be written in parentheses
after it, e.g., ACK(REJECT) is a REJECT piggybacked on an
ACK.

The algorithm begins by initializing state to BALLOTING
at every process, and by appointing the lowest ranked non-
suspect process as root. In Phase 1 the root generates a
ballot and broadcasts the ballot (line 7). When a non-root
process receives the ballot (line 31), if it has not already
agreed to another ballot, it performs the ballot broadcast
algorithm as described above. If the process has already agreed
to another ballot (line 35), then it sends a NAK message
with a piggybacked AGREE_FORCED message along with the
previously agreed upon ballot. The NAK(AGREE_FORCED)
message is forwarded up the tree to the root.

If the root receives a NAK(AGREE_FORCED) message it
records the ballot and jumps to Phase 2. If the broadcast
returned a NAK because of a failed process or if the ballot was
rejected, the root restarts Phase 1 with a new ballot. Otherwise,
the ballot was accepted and the root jumps to Phase 2. (line
15).

In Phase 2, the root knows that the ballot has been agreed
upon by all processes. The root sets its state to AGREED,
then broadcasts an AGREE message along with the ballot
(line 19). Upon receiving the AGREE message (line 37), a
process executes the broadcast algorithm, saves the ballot and
sets its state to AGREED. If the broadcast algorithm returns a
NAK at the root, indicating that some process has failed, the
root restarts Phase 2, otherwise the root jumps to Phase 3.

When a process is in the AGREED state, it knows that all
processes have agreed on the ballot. When the root starts
Phase 3, it knows that every process is in the AGREED state.
The root starts Phase 3 by setting its state to COMMITTED,
then broadcasting the COMMIT message (line 26). When a
process receives the COMMIT message (line 45), it executes
the broadcast algorithm, then sets its state to COMMITTED.
The root will restart Phase 3 until the broadcast succeeds with
an ACK.

The algorithm handles non-root process failure by repeating
broadcast operations. However, when a root process fails,
a new root must appoint itself. This is done in line 49
when a process detects that all lower ranked processes are
suspect. Depending on its state, the new root will start the
algorithm at one of the three phases. If the new root is in
the COMMITTED state, then it knows that all processes are in
either the COMMITTED or AGREED states, so it can jump to
Phase 3. If the new root is in the AGREED state, then it knows
that all processes have agreed to the ballot, so it can jump to
Phase 2. If the new root is in the BALLOTING state, then it
does not know if a ballot has been agreed upon but it does
know that no process can be in the COMMITTED state, so it
jumps to Phase 1. If it turns out that some process was in the

AGREED state, because it received an AGREE message before
the old root became suspect, then that process will reply with
a NAK(AGREE_FORCED) message when it receives the ballot
(line 35). When the root receives the NAK(AGREE_FORCED)
message, it knows that a previous ballot had been agreed
upon so it will jump to Phase 2 (line 10). Note that process
failures might prevent the NAK(AGREE_FORCED) message
from reaching the root, however as long as there are non-
suspected processes in the AGREED state, those processes will
send NAK(AGREE_FORCED) message in response to ballot
messages, and eventually, when no processes fail or become
suspected, the root will receive the AGREE_FORCED message.

The distributed consensus algorithm satisfies three proper-
ties:

1) (Validity) A process will only commit to a ballot if every

non-suspect process accepts it.

2) (Uniform agreement) No two processes will commit to

different ballots.

3) (Termination) All non-suspected processes will eventu-

ally commit.

We first prove several lemmas then prove that the distributed
consensus algorithm satisfies these properties.

Lemma 5: If a root enters Phase 2, then all non-suspect
processes have accepted the ballot.

Proof: By inspecting the algorithm there are four ways
to start Phase 2: (1) from Phase 1 if a NAK(AGREE_FORCED)
is received (line 10), (2) from Phase 1 if the root received an
ACK(ACCEPT) from every child (line 15), (3) from Phase 2 if
a NAK is received (line 21) and (4) if a new root is appointed
and it has received an AGREE message (line 54).

We first prove that if a root enters Phase 2 by cases 1, 3 or
4, then a root must have previously entered Phase 2.

Proof by contradiction: Assume the root enters Phase 2 by
case 1, 3 or 4, but no root has previously entered Phase 2.

Case 1: The root has received a NAK(AGREE_FORCED).
A process will only send this if it has received an AGREE
message, and AGREE messages are only sent in Phase 2, so a
root must have been in Phase 2. Contradiction.

Case 3: In this case the root is already in Phase 2. Contra-
diction.

Case 4: In this case the new root is in the AGREED state
indicating it has received an AGREE message, and AGREE
messages are only sent in Phase 2, so a root must have been
in Phase 2. Contradiction.

We know that if a root is in Phase 2, a root must have at
some point entered Phase 2 by case 2, so we only need to prove
the statement for case 2. In case 2, the root will enter Phase
2 if the broadcast algorithm returns an ACK(ACCEPT) after
broadcasting a ballot. The root will only get an ACK(ACCEPT)
from the broadcast algorithm if every process has received the
ballot and has agreed to it (by the correctness property of the
broadcast algorithm). [ |

Lemma 6: If a root enters Phase 3, all processes have
received an AGREE message.

Proof: By inspecting the algorithm, there are three ways
to enter Phase 3: (1) from Phase 2 if the root receives an ACK



from every child (line 22), (2) from Phase 3 if a NAK has been
received (line 28) and (3) if a new root is appointed and it has
received a COMMIT message (line 52).

We first prove that if a root enters Phase 3 by cases 2 or 3,
then a root must have previously entered Phase 3.

Proof by contradiction: Assume the root enters Phase 3 by
case 2 or 3, but no root has previously entered Phase 3.

Case 2: The root is already in Phase 3. Contradiction.

Case 3: If the new root has already received a COMMIT
message, a root must have already entered Phase 3, since
COMMIT messages are only sent in Phase 3. Contradiction.

We know that if a root is in Phase 3, a root must have at
some point entered Phase 3 by case 1, so we only need to prove
the statement for case 1. If the root entered Phase 3 by case
1, then the broadcast algorithm must have returned an ACK
after broadcasting AGREE messages, therefore every process
must have received the AGREE message (by the correctness
property of the broadcast algorithm). ]

Lemma 7: If a ballot is acceptable to all processes, and no
process fails or becomes suspect during Phase 1, the root will
complete Phase 1 and enter Phase 2.

Proof: By the termination property of the broadcast
algorithm, the broadcast of the ballot will terminate. If another
non-suspect process has received an AGREE message, the
root will receive a NAK(AGREE_FORCED) message and enter
Phase 2.

If no non-suspect process has received an AGREE message,
the broadcast will return an ACK. Since the ballot is acceptable
to all processes, an ACCEPT will be piggybacked on the ACK
and the root will enter Phase 2. ]

Lemma 8: If no process fails or becomes suspect during
Phase 2, the root will complete Phase 2 and enter Phase 3.

Proof: The broadcast of the AGREE message will ter-
minate, and since no process fails or becomes suspect, the
broadcast will return an ACK and the root will enter Phase 3.

|

Lemma 9: If no process fails or becomes suspect during
Phase 3, all processes will commit.

Proof: The broadcast will terminate and the root will
receive an ACK from every child, indicating that every process
received the COMMIT message. Since every process received
a COMMIT message, every process will have committed. H

We now prove that the distributed consensus algorithm satis-
fies the validity, uniform agreement and termination properties.

Theorem 4: (Validity) A process will only commit to a
ballot if every non-suspect process accepts it.

Proof: A process will only commit if it receives a
COMMIT message, or if it is the root and it enters Phase 3.
COMMIT messages are only sent from Phase 3, so a process
will only receive a COMMIT if the root has entered Phase 3.
We know from Lemma 6 that if the root has entered Phase
3, all processes have received an AGREE message. The root
will only enter Phase 3 if it has entered Phase 2. If a root
enters Phase 2, then all non-suspect processes have accepted
the ballot. Therefore, if a process commits, every non-suspect
process has accepted the ballot. ]

Theorem 5: (Uniform agreement) No two processes will
commit to different ballots.

Proof: Once a root enters Phase 2, it will never go back to
Phase 1, so a root process will never send an AGREE message
for more than one ballot.

From Lemma 6, a process will not enter Phase 3 unless
every process has received an AGREE message. A process
will only commit if it has received a COMMIT message, and
COMMIT messages are only sent in Phase 3. So if a process
commits to a ballot it must have received an AGREE message.

It follows then that in order for two processes to commit to
different ballots, there must be two root processes. This may
only happen if the new root process incorrectly suspects the
old root process and appoints itself as root while the old root
is alive and not suspected by other processes.

If the old root does not suspect the new root and if the
old root is not in the COMMITTED state, then it must still
need to broadcast the AGREE message. If that broadcast were
to return an ACK, then all processes must have received the
AGREE message (by the correctness property of the broadcast
algorithm). However, because the new root suspects the old
root, it will not receive any messages from the old root. This
means that the old root will not successfully complete the
broadcast algorithm and so cannot enter Phase 3 and enter the
COMMITTED state or send COMMIT messages.

If the old root does suspect the new root, then if the
broadcast of an AGREE message succeeds at one of the roots,
we know that all of the non-suspected processes have the same
ballot. If the other root tries to broadcast an AGREE message
with a different ballot, it will receive a NAK (line 40) and will
not be able to complete the broadcast, and so will not be able to
enter Phase 3 to commit or send COMMIT messages. However
if the ballots from both roots are the same, the broadcasts of
AGREE messages from both roots can succeed, but because
both ballots are the same, all processes will commit to the
same ballot.

Therefore no two processes will commit to different ballots.

|

Theorem 6: (Termination) All non-suspected processes will
eventually commit.

Proof: From Lemmas 7, 8 and 9, we see that as long as
processes do not fail or become suspect during a phase, the
phase will complete. Since we have assumed that failures (or
processes becoming suspect) will cease long enough to allow
the algorithm to complete, then regardless of which phase the
root is in when the failures cease, all processes will commit.

|

IV. IMPLEMENTING MPI_COMM_VALIDATE

In this section, we describe how the MPI_Comm_validate
function can be implemented using the distributed consensus
algorithm.

In an implementation of MPI_Comm_validate, the root
sends its set of suspected processes from the communicator
as the ballot. A process will accept the ballot if it does
not suspect any additional processes, otherwise it rejects the



ballot. If the ballot is rejected, the root updates its suspect
set and tries again. Eventually the ballot will be acceptable
to all processes. We can improve the convergence time if a
process were to include the failed processes missing from
the ballot in the ACK(REJECT) message. Once the process
reaches the COMMITTED state, the process can return from
the MPI_Comm_validate call, however, it must periodically
check (e.g., in the progress function of the MPI implementa-
tion) for the failure of the root. If the root becomes suspect,
the process may need to participate in another broadcast of
the COMMIT message.

Loose semantics of MPI_Comm_validate can be imple-
mented by eliminating Phase 3 and committing as soon as
the process reaches the AGREED state. At this point every
process knows that every other process has agreed to the
ballot. If the root process does not become suspect before the
broadcast of the AGREE message succeeds, then all processes
will commit to the same ballot. If, however, the root becomes
suspect before the broadcast succeeds and all processes that
have received the AGREE message and have committed also
become suspect, then the remaining processes may commit
to a different ballot than the processes that committed earlier.
However, all non-suspect processes will have committed to the
same ballot.

We have implemented MPI_Comm_validate as an MPI
program rather, than modifying an MPI implementation. This
allowed us to evaluate the algorithm at a large scale on a Blue
Gene/P. We expect the performance of the operation imple-
mented this way to be an upper bound on the performance of
the operation if it were integrated into an MPI implementation.

V. PERFORMANCE EVALUATION

In this section we first analyze the time complexity of the
distributed consensus algorithm, then describe our experimen-
tal evaluation of the MPI_Comm_validate operation at large
scale.

A. Algorithm Analysis

The algorithm has three phases, each consisting of a
broadcast and a reduction operation. The complexity of the
broadcast and reduction is a function of the number of live
processes and depends on the shape of the broadcast tree. In
Section III-A, we mentioned that if the compute_children
function always chose a child closest to the median from the
descendant set, the algorithm would generate a binomial tree.

If we implement the algorithm this way, then every process
selects its first child such that it assigns half of its descendants
to the first child. That would create a tree with a depth
of [lgn]. Since the algorithm performs six broadcasts and
reductions on the tree, the algorithm requires O(logn) steps
to complete in the failure-free case. The implementation
evaluated below used this method to construct the broadcast
trees.

If we consider failures during the algorithm and the failures
occur frequently enough, then theoretically the algorithm
might never complete. However in practice we expect that

250 T T T T T T T T T
200 1
o
A
2 150 | 1
>
2
o 100 r 1
o
—
50T validate —+— 1
unopt-collectives —<—
0 collectives —x— ‘ ‘ ‘
o S 7, 7. 3 2 s> 82 Z
7 Q. S Q S (% S O
TR e B VY 2 % %
Number of processes
Fig. 1.  Comparison of the validate operation with collectives operations

performing a similar communication pattern, using Blue Gene/P optimized
collectives and unoptimized collectives.

periodically the failures will cease long enough to allow the
algorithm to complete at least a phase. That is sufficient to
allow the algorithm to make progress.

B. Experimental Evaluation

We evaluated our implementation at Argonne National
Laboratory on Surveyor, a Blue Gene/P with 1,024 quad-
core nodes. Figure 1 shows the results of the evaluation. As
expected, the operation scales logarithmically. For comparison,
we evaluated the time taken to perform a communication
pattern similar to that of the validate operation using broadcast
and reduction operations. The figure shows the results with
optimized collectives using the Blue Gene/P collective tree
network and with unoptimized collectives using the same torus
network that the validate operation uses. At full scale, the
validate implementation took 222 s to perform the operation,
which is 1.19 times slower than performing a similar com-
munication pattern with unoptimized collectives. We expect
the performance of the validate algorithm to improve when
the operation is integrated into the MPI implementation by
making the algorithm more responsive to incoming messages.

We also evaluated the performance of the operation with
loose semantics. Figure 2 shows the comparison. Using loose
semantics, the operation is performed 94 us faster at full
scale than the strict implementation (a speedup of 1.74).
Depending on the requirements of the application and the
frequency at which the application calls validate, using the
loose implementation can provide performance improvement
to the application.

We evaluated the performance of the MPI_Comm_validate
with failed processes. We started with 4,096 processes then
randomly chose processes to fail. Figure 3 shows the per-
formance of MPI_Comm_validate with strict and loose se-
mantics while the number of failed processes was varied
between zero and 4,095. The graph shows a jump in latency
between zero and one process failure. This is due to the fact



250 T T T T T T T T T
200
o
3
E 150
>
2
o 100
©
a
50
strict —+—
olfJoose ——
o S 7, e 3 > s 82 b7
7. Q. O Q. > (7] X o,
TR % R v D % S
Number of processes
Fig. 2. Comparison of validate using strict and loose semantics.

that in the failure free case, the list of failed processes is
not sent. However, in the case where failed processes have
been detected, the bit vector representing the list of failed
processes is sent as a separate message in Phases 2 and 3 of the
algorithm. Each non-root process then needs to compare this
list to its local list of failed processes. All of this adds overhead
to the operation. A possible optimization to be investigated
would be to use a different, more compact, representation of
the list, e.g., an explicit list of failed processes rather than a
bit vector, when the number of failed processes is below a
certain threshold.

Notice that as the number of failed processes increases
from 1, the latency stays relatively constant until around 3,600
failed processes. This is due how the broadcast algorithm
generates the tree. With failed processes, the shape of the
tree remains close to that of a binomial tree with no failed
processes and so has similar depth. However after around
3,600 failed processes, the depth of the tree quickly decreases,
which decreases the latency of the algorithm.

VI. RELATED WORK

Chandra-Toueg [5] and Paxos [6] are the classical methods
for achieving distributed consensus. These algorithms have
scalability issues in that the coordinator process sends and
receives messages individually from every process. Work has
been done to improve scalability in [7] and [8]; however, these
solutions are targeted for database systems that might have
only tens or hundreds of committing processes in a large-scale
system and so are not appropriate for exascale systems. The
algorithm presented in this paper uses a fault tolerant broadcast
tree to distribute and collect messages, making the algorithm
highly scalable. The Paxos algorithm is tolerant to network
partitioning, which is a failure mode not considered in this
paper.

In [9], Weikum and Vossen describe a “transactional tree
two-phase commit algorithm” where commit and acknowledg-
ment messages are forwarded to committing processes over a
tree. This is a similar approach to our algorithm. However

400 T T T T T T T T

350 1
300 1
o
S 250 J
3 i
Z 200 1
5
= 150 | 1
—
100 |
50 r strict —+— 4
glfoose —— =
% S 7, e S > < Q. b7
7. Q. by Q > (7] X O,
TR % B v D % S
Number of failed processes
Fig. 3. Performance of validate with failed processes.

Weikum and Vossen do not describe how the tree is to be
constructed dynamically nor how to handle process failures
while the messages are being propagated over the tree. These
issues are explicitly addressed in this paper.

In [10], Fischer et al. proved that distributed consensus in
an asynchronous model with one faulty process is impossible
in a finite number of steps. Our algorithm does not guarantee
consensus in a finite number of steps; rather, it will reach
consensus with a probability of 1.

Hursey et al. described an implementation of the loose
semantics of the MPI_Comm_validate operation in [11].
The implementation is based on the two-phase commit algo-
rithm and requires a termination-detection algorithm to avoid
blocking when the coordinator fails. Their algorithm uses a
static tree structure that is preserved between invocations of
the MPI_Comm_validate operation. When a process fails,
children of the failed process search for a live ancestor and
reconnect to it. After the MPI_Comm_validate operation
completes, the tree is rebalanced to compensate for any failed
processes. If the coordinator fails before a child sends its vote,
that child process decides to abort. If, however, the coordinator
fails after a child has sent its vote but before receiving a
decision, it queries its siblings (i.e., every other child of the
failed coordinator) to determine if any has reached a decision.
If so, the child makes the same decision and broadcasts that
decision down its subtree. Their algorithm is also log-scaling,
but does not implement strict semantics.

VII. CONCLUSION

This paper presented a scalable distributed consensus algo-
rithm used to implement the MPl_Comm_validate operation
proposed by the MPI 3 fault-tolerance working group. This
paper also presented proofs that the algorithm satisfies the
validity, uniform agreement and termination properties. The
algorithm was evaluated on a 4,096-core Blue Gene/P machine
and was shown to be extremely scalable. The implementation
was able to perform a full-scale validate operation in 222 us
and scaled logarithmically.



Using loose semantics, the implementation showed a speed-
up of 1.74 compared to strict semantics. Depending on the
requirements of the application, loose semantics may be ap-
propriate and can reduce the impact of adding fault-tolerance
features to an application.

We intend to implement the MPI_Comm_validate oper-
ation in MPICH2. We expect that this implementation will
improve the responsiveness of the algorithm and hence im-
prove its performance. Furthermore, we intend to use a similar
algorithm to implement other operations requiring distributed
consensus, such as the communicator creation routines.

ACKNOWLEDGMENTS

We thank Joshua Hursey for his suggestions and ideas
on designing and implementing MPI_Comm_validate. We
also thank the members of the MPI Forum and the fault-
tolerance working group, especially Torsten Hoefler for his
helpful comments on the paper.

REFERENCES

[1] J. Anfinson and F. T. Luk, “A linear algebraic model of algorithm-based
fault tolerance,” IEEE Transactions on Computing, vol. 37, pp. 1599—
1604, 1988.

[2] Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Transactions on Parallel and Distributed Systems,
vol. 19, no. 12, December 2008.

[3] ——, “Highly scalable self-healing algorithms for high performance
scientific computing,” IEEE Transactions on Computers, July 2009.

[4] Fault Tolerance Working Group, “Run-though stabilization proposal.”
[Online]. Available: http://svn.mpi-forum.org/trac/mpi-forum-web/wiki/
ft/run_through_stabilization_2

[5] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, pp. 225-267, March
1996.

[6] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, pp. 133-169, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/279227.279229

[7]1 S. Ranganathan, A. D. George, R. W. Todd, and M. C. Chidester,
“Gossip-style failure detection and distributed consensus for scalable
heterogeneous clusters,” Cluster Computing, vol. 4, pp. 197-209, July
2001. [Online]. Available: http://dx.doi.org/10.1023/A:1011494323443

[8] P. Jurczyk and L. Xiong, “Adapting commit protocols for large-scale
and dynamic distributed applications,” in Proceedings of the OTM 2008
Confederated International Conferences, CooplS, DOA, GADA, IS, and
ODBASE 2008. Part I on On the Move to Meaningful Internet Systems:,
ser. OTM *08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 465-474.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-88871-0_33

[91 G. Weikum and G. Vossen, Transactional information systems: theory,
algorithms, and the practice of concurrency control and recovery.
Morgan Kaufmann Publishers Inc., 2001, ch. 19.3, pp. 744-748.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, pp.
374-382, April 1985. [Online]. Available: http://doi.acm.org/10.1145/
3149.214121

[11] J. Hursey, T. Naughton, G. Vallee, and R. Graham, “A log-scaling
fault tolerant agreement algorithm for a fault tolerant MPL” in
Recent Advances in the Message Passing Interface, ser. Lecture Notes
in Computer Science, Y. Cotronis, A. Danalis, D. Nikolopoulos,
and J. Dongarra, Eds. Springer Berlin / Heidelberg, 2011, vol.
6960, pp. 255-263. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-24449-0_29

10



